eitaa logo
Data ➕ Science
28 دنبال‌کننده
122 عکس
7 ویدیو
100 فایل
مشاهده در ایتا
دانلود
@DataPlusScince__Machine Learning Cheatsheet.pdf
4.62M
💡 خلاصه‌برگ جدید یادگیری ماشین 2024 📅 🔍 مشتمل بر : 📘 تعاریف کلی یادگیری ماشین (Machine Learning General): تعریف تابع هدف (target function) و انواع الگوریتم‌ها (پارامتریک (Parametric) و غیرپارامتریک (Non-Parametric)) 📊 روش‌های یادگیری نظارت‌شده و بدون نظارت (Supervised and Unsupervised Learning): پیش‌بینی نتایج (Prediction) و یافتن ساختارهای پنهان (Hidden Patterns) 📚 مدل‌های مختلف (Types of Models): مدل‌های تمایزی (Discriminative Models) و مولد (Generative Models) ⚖️ مقابله با بایاس و واریانس (Bias-Variance Trade-off): تشخیص Underfitting و Overfitting 🔧 بهینه‌سازی و رگرسیون خطی (Optimization and Linear Regression): استفاده از Gradient Descent ✏️ ➖➖➖➖➖➖➖➖➖➖➖➖ برای آموزش علم داده به جمع ما بپیوندید: 👇 📊👨‍🏫 @DataPlusScience | @Data➕Science @DataPlusScience
@DataPlusScience__Data Science Dictionary.pdf
584.3K
📚 واژه‌نامه علوم داده این داکیومنت حاوی بیش از ۱۰۰ اصطلاح تخصصی در حوزه علوم داده است که به ترتیب حروف الفبا آورده شده‌اند. تعاریف کاملی از مفاهیم پایه‌ای ارائه می‌دهد. این داکیومنت به ویژه برای دانشجویان و علاقه‌مندان به یادگیری مفاهیم علوم داده بسیار مفید است. ➖➖➖➖➖➖➖➖➖➖➖➖ برای آموزش علم داده به جمع ما بپیوندید: 👇 📊👨‍🏫 @DataPlusScience | @Data➕Science @DataPlusScience
@DataPlusScience__Data Science Interview Preparation.pdf
2.15M
📑 آمادگی برای مصاحبه علوم داده (Data Science Interview Preparation) 💡این فایل شامل مجموعه‌ای از سوالات کلیدی مصاحبه‌های علوم داده است که از مباحث پایه تا پیشرفته را پوشش می‌دهد. هدف آن کمک به متخصصان برای آماده‌سازی بهتر و پاسخگویی مؤثر در مصاحبه‌ها است. 📄 ساختار کلی: مفاهیم آماری (Statistics): توضیح تئوری حد مرکزی (Central Limit Theorem)، رگرسیون خطی (Linear Regression)، و آزمون فرضیه (Hypothesis Testing). یادگیری ماشین (Machine Learning): بررسی الگوریتم‌های نظارت‌شده و بدون نظارت، و تعادل بایاس-واریانس (Bias-Variance Trade-off). تحلیل داده (Data Analysis): مهارت‌های پاک‌سازی داده و استفاده از ماتریس درهم‌ریختگی (Confusion Matrix) برای ارزیابی مدل. آماده‌سازی برای مصاحبه: نکاتی برای بهبود مهارت‌های فنی و نمایش فرآیند فکری در مصاحبه. 📢 ➖➖➖➖➖➖➖➖➖➖➖➖ برای آموزش علم داده به جمع ما بپیوندید: 👇 📊👨‍🏫 @DataPlusScience | @Data➕Science @DataPlusScience
@DataPlusScience__Introduction to RAG.pdf
574.1K
📑 مقدمه‌ای بر RAG و کاربردهای آن 💡 این فایل به معرفی RAG (Retrieval-Augmented Generation) می‌پردازد و نحوه عملکرد، مزایا و کاربردهای آن را در بهبود کیفیت و دقت خروجی مدل‌های LLM (Large Language Models) توضیح می‌دهد. 📄 ساختار کلی: محدودیت‌های LLM: چالش‌های مدل‌های زبان بزرگ، مانند توهمات (Hallucinations) و عدم به‌روزرسانی به‌موقع. معماری RAG: ترکیب بازیابی اطلاعات با تولید متن. مزایا: بهبود دقت، انعطاف‌پذیری، و امکان استفاده از داده‌های خارجی. کاربردها: چت‌بات‌ها (Chatbots)، پاسخ‌دهی به سؤالات (Question Answering)، تولید محتوا (Content Generation) و کمک به حوزه سلامت. 📢 ➖➖➖➖➖➖➖➖➖➖➖➖ برای آموزش علم داده به جمع ما بپیوندید: 👇 📊👨‍🏫 @DataPlusScience | @Data➕Science @DataPlusScience