eitaa logo
فلسفه ذهن
937 دنبال‌کننده
140 عکس
69 ویدیو
21 فایل
محتوای تخصصی در حوزه #فلسفه_ذهن و فلسفه #علوم_شناختی توسط: مهدی همازاده ابیانه @MHomazadeh عضو هیات علمی موسسه حکمت و فلسفه ایران با همکاری هیئت تحریریه
مشاهده در ایتا
دانلود
🕒 مباحث ذیل را می‌‌توان به دو حوزه کلّی تفکیک کرد: 1) موضوعات مربوط به (مانند مسئولیت پیامد تصمیمات و رفتار ، حق مالکیت خلاقیت‌های هنری یا علمی هوش مصنوعی، تأثیر روبات‌ها بر تعاملات بشری، جواز و نحوه محدودکردن هوش مصنوعی، جواز پاداش و تنبیه روبات‌ها، ...) که بیشتر در حوزه $فلسفه_اخلاق قرار می‌گیرند. 2) موضوعات مربوط به «وجودشناسی هوش مصنوعی» یا (مانند امکان بالقوه‌ی ، چشم‌انداز ، ماهیت و حیطه‌ی ، میزان قابلیت رویکرد کلاسیک محاسباتی و رویکردهای و در تولید ، ...) که عمدتاً در حوزه بررسی می‌شوند. 🕓 برخی مهندسان و پژوهشگران فنّی هوش مصنوعی اما علاقه چندانی به دسته دوم مباحث فوق ندارند و در بین مباحث فلسفی هوش مصنوعی، دسته نخست را به دلیل آن‌که اوّلاً کاربردی‌تر می‌یابند و ثانیاً توانایی هوش مصنوعی و امکان تحقّق چشم‌اندازهای آتی را به چالش نمی‌کشد، ترجیح می‌دهند. ضمن این‌که برخی چشم‌اندازهای معاصر هوش مصنوعی نیز از وعده‌های دهه 60 و 70 میلادی مبنی بر تولید شخص (person) با تمام حالات آگاهانه و ویژگی‌های پدیداری کوتاه آمده و بعضاً تحقّق اهدافی صرفاً کاربردی و جزئی را دنبال می‌کنند. 🕔 این اتفاق البته در میان محققان و مهندسان هوش مصنوعی در داخل کشورمان بنحوی شایع‌تر و جدی‌تر وجود دارد و تعاملات بینارشته‌ای فلسفی – فنّی که بین برخی دپارتمان‌ها و دانشمندان غربی در حوزه هوش مصنوعی مشاهده می‌شود در کشور ما تقریباً هیچ نمونه‌ای (ولو تقلیل‌یافته) ندارد. 🕕 هندبوک هوش مصنوعی که چاپ اوّل آن در سال 2015 توسط انتشارات دانشگاه کمبریج به چاپ رسیده و اساتید مطرح بین‌المللی در فصول مختلف آن قلم زده‌اند، چهار فصل کلّی دارد که فصل اول آن به «بنیادهای فلسفی» و «چالش‌های فلسفی» می‌پردازد و فصول تکنیکال بعدی نیز مکرّراً در لابلای مباحث GOFAI و پیوندگرایی و بدن‌مندی و (Artificial Life) و حتی ، به مسائل فلسفی ارجاع می‌دهد و تأملاتی دوطرفه را پیش روی مخاطب می‌گذارد. (See: The Handbook of Artificial Intelligence, 2015, Cambridge University Press) درباره ضرورت توجه به مباحث وجودشناسی هوش مصنوعی لااقل از دو منظر می‌توان سخن گفت که در پست‌های آینده بدان‌ها اشاره خواهد شد. @PhilMind
🖥 برخی مهندسان و پژوهشگران علاقه چندانی به مباحث وجودشناختی AI ندارند و در بین مباحث ، حداکثر مسائل را بدلیل آن‌که اوّلاً کاربردی‌تر می‌یابند و ثانیاً توانایی هوش مصنوعی و امکان تحقّق چشم‌اندازهای آتی را به چالش نمی‌کشد، ترجیح می‌دهند. 🖥 این اتفاق البته در میان مهندسان در کشورمان بنحوی شایع‌تر و جدی‌تر وجود دارد و تعاملات بینارشته‌ای فلسفی – فنّی که بین برخی دپارتمان‌ها و دانشمندان غربی در حوزه هوش مصنوعی مشاهده می‌شود در کشور ما تقریباً هیچ نمونه‌ای (ولو تقلیل‌یافته) ندارد. 🎖درباره ضرورت توجه به متافیزیک هوش مصنوعی می‌توان به تأثیر متقابل علمی و تئوریک اشاره کرد. تأملات فلسفی چه در زمانی که رویکرد کلاسیک دیجیتال در پی برنامه‌نویسی‌های کامپیوتری بود و چه در زمانی که نظریات محاسباتی جدید در یا تئوری‌های به کار گرفته شد، در هر دو جنبه ارائه‌ تئوری‌های ایجابی برای ساخت هوش مصنوعی و هم در نقد و نقض آن‌ها فعال بوده‌اند. 🎖نظریه محاسباتی کلاسیک ذهن (CCTM) که بعدها توسط فودور – فیلسوف ذهن دانشگاه راتگرز - با نظریه بازنمودگرایی تلفیق گردید، زمینه و پایه تولیدات فنّی و پژوهش‌های دهه 70 پیرامون هوش مصنوعی را شکل داد. کما این‌که تأملات و انتقادات امثال هابرت (درباره حسّ عمومی و مرتبط بودن) و (درباره درک زبانی)، چالش‌هایی جدّی پیش روی تئوری‌ها و تکنیک‌های ساخت هوش مصنوعی قرار داد. این تعاملات فلسفی – فنّی با زمستان هوش مصنوعی در دهه 80 و ورشکستگی کمپانی‌ها تکمیل شد و دوره جدیدی را با تئوری‌هایی متفاوت رقم زد. 🎖در دوره جدید نیز تئوری‌های پیوندگرایی و بدن‌مندی با چالش‌هایی جدی از سوی فیلسوفان مواجه بوده‌اند. دریفوس در دهه 70 و در مقاله پر ارجاع What Computers Can't Do استدلال می‏کرد که توانایی ما در تعامل با دیگران، یک نوع مهارت غیر توصیفی و تجربه‌ای از سنخ دانستنِ چگونگی (know how)‌ و دانستنِ گزاره‌ای است که قابل تقلیل به کدگذاری‏های گزاره‏ای در برنامه‏نویسی نیست. 🎖او در سال 1999 و در کتاب What Computers Still Can't Do توانایی شبکه‏های نورونی پیوندگرا که بر پایه دسته‌بندی رفتارها برنامه‌ریزی می‌شود را نیز به چالش کشید. دستگاه‌های پیوندگرا قادر به تعمیم هستند و هرگاه با یک الگوی ورودی جدید - که از نوع الگوی تمرین‌شده قبلی است – مواجه می‌شوند، خروجی‌ای مشابه تولید خواهند کرد. دریفوس و حامیانش اما اشکال مرتبط بودن را در این‌جا نیز تکرار می‌کنند: «از یک نوع بودن» در دسته‌بندی و تعمیم رفتارها را چه چیزی مشخّص می‏کند؟ به اعتقاد این‌ها مدل‌سازی نمی‌تواند جلوی تعمیم‌های ناجور و بی‌جا را بگیرد. کما این‌که اشکال اتاق چینی سرل درباره درک زبانی کامپیوترهای دیجیتال، در برابر شبکه‌های پیوندگرا نیز قابل بازسازی است و پاسخ روبات وی (Robot Reply) هم در برابر رویکرد بدن‌مندی. 🎖توجه به مباحث فلسفی هوش مصنوعی نه تنها اشکالات و نواقص نظریه‌های رایج در ساخت روبات‌ها را گوشزد می‌کند، بلکه حتی می‌تواند به رویکردهای جدیدی در تولید بینجامد. از جمله نظریه آگاهی در که زمینه را برای امکان و بلکه شیوه تولید در شبکه‌های نورونی مصنوعی متناسب با شبکه‌های نورونی طبیعی، فراهم می‌آورد. @PhilMind