#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 مدارهای کوانتومی (قسمت ۱):
هر مدار کوانتومی، از اجزایی تشکیل شده است. یکی از مهم ترین بخش های هر مدار کوانتومی، گیت های کوانتومی هستند.
در این تصویر، گیت swap نشان داده شده است که از ترکیب سه گیت CNOT تشکیل میشود. این گیت دو کیوبیت میگیرد و جای این دو کیوبیت را در خروجی تغییر میدهد.
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 مدارهای کوانتومی (قسمت ۲):
به جز گیت های کوانتومی، یکی دیگر از اجزای اساسی هر مدار کوانتومی «سیم»ها هستند. سیم ها، نشان دهنده ی سیم های فیزیکی واقعی نیستند. هر سیم نشان دهنده ی یک کیوبیت است که در طول زمان حرکت میکند. بنابراین، همینطور که در طول سیم (در مدار کوانتومی) حرکت می کنیم، در واقع داریم در طول زمان حرکت میکنیم.
گاهی اوقات (بیشتر در کاربردهای اپتیک کوانتومی)، سیم ها نشان دهنده ی ذرات فیزیکی (مانند فوتون ها) هستند که در فضا حرکت میکنند. بنابراین، در این مورد هنگامی که در طول سیم حرکت میکنیم، در واقع داریم مسیر حرکت فوتون را در نظر میگیریم.
هر مدار کوانتومی، از چپ به راست خوانده میشود، و گیت های موجود در شماتیک مدار، به ترتیب زمانی، از چپ به راست بر کیوبیت ها اثر میکنند.
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 مدارهای کوانتومی (قسمت ۳):
مدارهای کوانتومی، دقیقا تعمیم مدارهای کلاسیکی نیستند. به این معنا که هر عملگری که در مدارهای کلاسیکی مجاز می باشد، در مدارهای کوانتومی مجاز نیست.
یکی از این عملگرها، بازخورد (feedback) است. به بیان دیگر، در مدارهای کوانتومی نمیتوان حلقه داشت.
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 مدارهای کوانتومی (قسمت ۴):
مدارهای کوانتومی، دقیقا تعمیم مدارهای کلاسیکی نیستند. به این معنا که هر عملگری که در مدارهای کلاسیکی مجاز می باشد، در مدارهای کوانتومی مجاز نیست.
یکی از کارهای رایج در مدارهای کلاسیک، این است که چند سیم را به هم متصل کرده و یک سیم در خروجی داشته باشیم. این عملگر که معروف است به عملگر FANIN در مدارهای کوانتومی ممنوع است. علت ممنوع بودنش هم این است که این عملگر برگشت ناپذیر است، در حالی که یک عملگر برگشت ناپذیر نمیتواند یک عملگر یکانی باشد.
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 مدارهای کوانتومی (قسمت ۵):
مدارهای کوانتومی، دقیقا تعمیم مدارهای کلاسیکی نیستند. به این معنا که هر عملگری که در مدارهای کلاسیکی مجاز می باشد، در مدارهای کوانتومی مجاز نیست.
یکی دیگر از کارهای رایج هر مدار کلاسیکی این است که از یک سیم، چند سیم دیگر منشعب کنیم و در واقع کپی برداری کنیم. این عملگر، که درست برعکس عملگر FANIN است، معروف است که عملگر FANOUT. این عملگر نیز در مدارهای کوانتومی ممنوع است. در واقع، هیچ عملگر یکانی ای وجود ندارد که بتواند از یک حالت یک کپی تهیه کند. این بحث جالب و مهم ممنوع بودن کپی کردن، در ادامه به تفصیل بررسی خواهد شد.
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 مدارهای کوانتومی (قسمت ۶):
یکی از عملگرهای رایج در مدارهای کوانتومی، عملگر controlled-U است. این عملگر که به نوعی تعمیم CNOT است، تشکیل شده از یک گیت U است که هر یکانی دلخواهی میتواند باشد که روی تعدادی کیوبیت اثر میکند.
عمل این گیت توسط یک کیوبیت کنترلی، کنترل میشود به این صورت که اگر کیوبیت کنترل در حالت <0| باشد، گیت U عمل نمیکند و اگر کیوبیت کنترل در حالت <1| باشد، گیت U عمل خواهد کرد.
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 مدارهای کوانتومی (قسمت ۷):
یکی دیگر از عملگرهای اساسی هر مدار کوانتومی، اندازه گیری است. عمل اندازه گیری یک کیوبیت را به یک بیت کلاسیک احتمالاتی تبدیل میکند. برای جلوگیری از گیج شدن، یک بیت کلاسیک احتمالاتی را با دو خط موازی نشان میدهیم.
نماد اندازه گیری در مدارهای کوانتومی، معمولاً به صورت یک "سنجه" مشخص میشود. عمل اندازه گیری، همواره در پایه های محاسباتی صورت میگیرد. در صورتی که علاقه مند به اندازه گیری در پایه های دیگر باشیم، باید با ترکیب گیت های مختلف، ابتدا یک تبدیل پایه انجام دهیم و سپس اندازه گیری را اعمال کنیم.
معمولاً در انتهای هر مدار کوانتومی، عمل اندازه گیری انجام میشود تا بتوان اطلاعات ناشی از مدار را به دست آورد.
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 مثال هایی از مدارهای کوانتومی (حالت های بِل):
در این تصویر مدار کوانتومی که برای ساختن حالت های بل مورد استفاده قرار میگیرد را به تصویر کشیده ایم. با اعمال یک گیت هادامارد و یک گیت CNOT میتوان از پایه های محاسباتی شروع کرد و همه ی حالت های مختلف بل را ساخت. چنین مداری برای ایجاد و تولید درهم تنیدگی بسیار ضروری است.
خود حالت های بل نیز بسیار در پروتکل های مختلف اطلاعات کوانتومی مورد استفاده هستند. بنابراین اهمیت چنین مدار کوانتومی غیر قابل انکار است.
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 مثالهایی از مدارهای کوانتومی (فرآبرد کوانتومی):
تا به حال این فکر کرده اید که اگر بخواهید حالت یک کیوبیت را انتقال دهید، چه باید بکنید؟ این را در نظر بگیرید که همیشه انتقال فیزیکی کیوبیت ها ممکن نیست. بنابراین ممکن است به این فکر کنید که حالت کیوبیت را بر حسب پایه های محاسباتی بسط دهم و سپس ضرایب این بسط را از طریقی ارسال کنم. اما این نکته را نیز باید در نظر بگیرید که حالت یک کیوبیت، یعنی همان ضرایب بسط، قبل از اندازه گیری برای ما مشخص نیستند.
در این تصویر، پروتکلی بسیار مهم که به «فرآبرد کوانتومی» معروف است، را به تصویر کشیده ایم. در این پروتکل هیچ نیازی ندارید که حالت کیوبیت را از قبل بدانید. فقط کافی است که یک جفت کیوبیت درهم تنیده، که در حالت بل آمده شده اند را مابین خود و دیگری به اشتراک بگذارید و با اندازه گیری هایی مشخص، حالت را به دیگری منتقل کنید. در نهایت هم با ارسال دو بیت کلاسیک، به دیگری، پروتکل کامل میشود.
البته اشتباه نشود، این روش هیچ اطلاعاتی را سریع تر از نور منتقل نمیکند!
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 مثالهایی از مدارهای کوانتومی (گیت توفولی):
آیا یک کامپیوتر کوانتومی، میتواند یک کامپیوتر کلاسیک را شبیه سازی کند؟ پاسخ این سوال از این جهت مهم است که بدانیم یک کامپیوتر کوانتومی در مقایسه با یک کامپیوتر کلاسیک، واقعاً چیست؟
پاسخ سوال مثبت است. گیت کلاسیک توفولی، گیتی است که میتوان تمامی مدارهای منطقی کلاسیکی را بر حسب این گیت ساخت. از آنجایی که این گیت برگشت پذیر است، مشابه کوانتومی این گیت هم کاملاً قابل ساختن است. بنابراین، یک کامپیوتر کوانتومی با داشتن گیت های توفولی، میتواند تمامی عملیات های یک کامپیوتر کلاسیک را انجام دهد.
چیزی که ما میخواهیم این است که کامپیوتر کوانتومی بتواند کارهایی انجام دهد که یک کامپیوتر کلاسیک نمیتواند!
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 توازی کوانتومی (قسمت ۱):
چه ایده ای را میتوان به کار برد تا سرعت محاسبه ی یک کامپیوتر را بالا برد. در واقع واحد پردازش گر خود را چگونه بسازیم که سرعت محاسبه بالا برود؟ یکی از ایده هایی که امروزه به کار میرود، استفاده از «محاسبه ی موازی» است. در این روش، به جای اینکه یک مرکز محاسبه گر داشته باشیم که دستورات بگیرد و به طور متوالی اجرا کند، یک تعداد مرکز محاسبه گر داریم که به صورت موازی این کار را انجام میدهند.
بسیار جذاب است که چنین ویژگی ای در یک کامپیوتر کوانتومی بسیار به سادگی به دست می آید. از آنجایی که مکانیک کوانتومی خاصیت «برهم نهی» را برای حالت های کوانتومی ممکن دانسته، چنین چیزی ممکن شده است.
در این تصویر، مداری به تصویر کشیده شده است که در آن واحد، یک تابع یک بیتی را به ازای حالت های ورودی مختلف محاسبه میکند، یعنی به صورت موازی، همه خروجی های ممکن تابع را محاسبه میکند. به این خاصیت «توازی کوانتومی» گفته میشود.
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 توازی کوانتومی (قسمت ۲):
در مداری که در این تصویر نشان داده ایم، محاسبه ی یک تابع n بیت-ورودی و تک بیت-خروجی، به صورت موازی نشان داده شده است. تفاوت اساسی بین «توازی کوانتومی» و «توازی کلاسیک» وجود دارد. در توازی کلاسیک، با اینکه چندین محاسبه گر داریم که به صورت همزمان محاسبه انجام میدهند، ولی هر کدام باید جداگانه اجرا شوند و صرفاً اجرای همزمان این محاسبه گرها خاصیت توازی را به وجود می آورد.
در توازی کوانتومی، تمامی مدار تنها یکبار اجرا میشود، و با یکبار اجرا شدن، همه ی محاسبه ها به صورت همزمان رخ میدهد. بنابراین، «منبع» خیلی کمتری به نسبت حالت کلاسیکی مصرف میشود.
اما نکته ای که درباره توازی کوانتومی وجود دارد این است که، به صورت مستقیم نمیتوان از این خاصیت بهره برد. در همین تصویر، نتایج مختلف محاسبه ی این تابع، در حالت کوانتومی ذخیره میشود که همانطور که میدانیم، قبل از اندازه گیری حالت کوانتومی برای ما نامعلوم است. بنابراین، یک کامپیوتر کوانتومی، به چیزی بیشتر از توازی کوانتومی نیاز دارد.
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 الگوریتم دویچ:
فرض کنید که یک تابع تک-بیت ورودی و تک-بیت خروجی به شما داده اند و از شما می پرسند که مقدار تابع به ازای ورودی های مختلفش یکسان است یا متفاوت. طبیعتاً برای اینکه بفمهید این تابع کدام حالت را دارد، باید دو بار به ازای مقادیر مختلف ورودی، محاسبه اش کنید.
اما همانطور که در پست های قبلی نشان داده ایم، در یک کامپیوتر کوانتومی، میتوان از خاصیت توازی کوانتومی استفاده کرد. در این تصویر، الگوریتم دویچ (به نام خود دانشمند) به تصویر کشیده شده است. با استفاده از این مدار کوانتومی، تنها با یکبار محاسبه میتوان تشخیص داد که تابع چه حالتی دارد.
بنابراین، ما اکنون الگوریتمی در اختیار داریم که در یک کامپیوتر کوانتومی قابل اجرا است و هیچ کامپیوتر کلاسیکی نمیتواند سریع تر از این الگوریتم، نتیجه را محاسبه کند.
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 الگوریتم دویچ-جوزا:
فرض کنید که یک تابع n بیت-ورودی و تک بیت-خروجی به شما داده اند که دو حالت دارد، یا یک تابع «ثابت» است یا یک تابع «متعادل». تابع ثابت، تابعی است که به ازای همه ی مقادیر ورودی مقادرش ثابت باشد و تابع متعادل تابعی است که به ازای دقیقاً نیمی از ورودی ها خروجی 0 و به ازای نیم دیگر خروجی 1 بدهد. حال از شما میپرسند که این تابعی که به شما داده شده، در کدام حالت است؟
در حالت کلاسیکی، در بدترین حالت، باید n/2 بار تابع را اجرا کنیم تا بفهمیم که کدام حالت است. آیا این مسئله هم یک الگوریتم کوانتومی دارد؟ آنچه در تصویر آمده، مثبت بودن پاسخ این سوال را نشان میدهد. الگوریتم دویچ-جوزا، بیان میدارد که تنها با یکبار اجرا کردن این مدار، میتوان فهمید که تابع داده شده، در کدام حالت است. سریع تر از هر کامپیوتر کلاسیکی.
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 انواع الگوریتم های کوانتومی:
الگوریتمهای کوانتومیای که تا امروز ساخته شدهاند به سه دستهی کلی تقسیم میشوند:
۱- الگوریتمهای بر مبنای تبدیل فوریه
۲- الگوریتمهای جستجو
۳- شبیهسازی کوانتومی
در ادامه، سعی میشود معرفی مختصری بر هر دسته ارائه شود.
⚛ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 ۱. الگوریتمهای کوانتومی بر مبنای تبدیل فوریه:
مشابه کوانتومی تبدیل فوریهی گسسته، همین مداری است که در تصویر آمده است. مسئلهی مهمی که مطرح است این است که محاسبهی این تبدیل فوریه بر روی یک کامپیوتر کوانتومی، تصاعدی سریعتر از کامپیوترهای کلاسیک است. بنابراین، طبیعی است که الگوریتمهایی که بر مبنای این تبدیل باشند، به صورت تصاعدی از الگوریتم کلاسیکیشان سریعتر هستند.
خبر خوب این است که دستهی وسیعی از الگوریتمهای کوانتومی، از همین جنس هستند. به عنوان مثالهایی از الگوریتمهای معروف میتوان به الگوریتم، دویچ-جوزا یا الگوریتم شور برای تجزیهی اعداد اشاره کرد. همچنین الگوریتم کوانتومیای که برای حل مسئلهی معروف زیرگروه پنهان، که هیچ حل کارآمد کلاسیکیای ندارد، پیشنهاد شده است، از جنس تبدیل فوریهی کوانتومی است.
⚛️ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 ۲. الگوریتمهای جستجوی کوانتومی:
طیف وسیعی از مسائل هستند که الگوریتم حلشان، از جنس جستجو کردن در یک مجموعه است. فرض کنید مجموعهای از N عضو دارید و مطلوب شما این است که عضوی از این مجموعه را، که ویژگی خاصی دارد، پیدا کنید.
بهترین الگوریتمهای کلاسیکی، تقریباً باید از مرتبهی N بار عمل انجام دهند تا بتوانند آن عضو را بیابند.
اما، گروور، توانست با ارائهی الگوریتم کوانتومیای، مسئلهی جستجو در یک فضای N عضوی را، با انجام دادن تعداد عملهایی از مرتبهی N^0.5، حل کند. بنابراین، همهی مسائلی که برای پایهی جستجو باشند، بر پایهی الگوریتم گروور، در یک کامپیوتر کوانتومی کارآمدتر حل میشوند.
البته باید توجه کرد که بر خلاف الگوریتمهای بر پایهی تبدیل فوریه، به صورت تصاعدی سرعت را افزایش میداد، الگوریتمهای جستجو سرعت را از مرتبهی ۲ افزایش میدهد، که به نسبت افزایش تصاعدی، افزایش کندتری محسوب میشود.
⚛️ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 ۳. شبیهسازی کوانتومی:
شاید یکی از دلایل اصلی توجه به کامپیوترهای کوانتومی، مسئلهی شبیهسازی یک سیستم کوانتومی است. این شبیهسازی روی کامپیوترهای کلاسیک بسیار دشوار است. علت دشوار بودن این شبیهسازی این است که تعداد پارامترهای یک سیستم کوانتومی مشتکل n ذره، برابر با c^n است و بنابراین به صورت نمایی با تعداد ذرات افزایش مییابد.
به همین دلیل، چون شبیهسازی یک سیستم کوانتومی بر روی یک کامپیوتر کوانتومی به صورت کارآمد ممکن است، ساختن یک کامپیوتر کوانتومی از اهمیت بسیار زیادی برخوردار است.
در زمینههای زیادی ما نیاز به شبیهسازی یک سیستم کوانتومی داریم. به عنوان نمونه، شبیهسازی یک سیستم ماده چگال، و یا شبیهسازی دینامیک مولکولها، همه از مثالهایی هستند که هماکنون بر روی کامپیوترهای کلاسیک غیرقابل دسترساند.
⚛️ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 قدرت محاسبات کوانتومی (قسمت ۱):
یکی از مسائل اصلی حوزهی محاسبات، دستهبندی مسائل قابل محاسبه در کامپیوترها است. یک دستهبندی (کلاسبندی) معروف، چیزی است که در تصویر آمده است.
کلاس P معمولاً به دسته مسائلی گفته میشوند که به سرعت در یک کامپیوتر کلاسیک حل میشوند. به عنوان مثال، محاسبه جذر یک عدد.
کلاس NP مربوط به مسائلی هستند که چک کردن درستی حلشان، در یک کامپیوتر کلاسیک، به سرعت قابل انجام است. واضح است که همهی مسائل کلاس P در کلاس NP نیز قرار دارند. اما مسائلی وجود دارند که NP هستند ولی P نیستند و این مسائل به نوعی، محدودیت اصلی کامپیوترهای کلاسیک هستند. یکی از معروفترین این مسائل، تجزیه یک عدد به عوامل اول آن است.
از طرف دیگر، دستهی وسیعتری از مسائل هستند که به PSPACE معروف هستند. این مسائل، فضای کمی از حافظه را نیاز دارند، اما لزوماً از نظر زمانی، بهینه نیستند.
این دستهبندی از مسائل، ما را قادر میسازد که بتوانیم قدرت اصلی کامپیوترهای کوانتومی را بهتر درک کنیم.
⚛️ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی
🟡 قدرت محاسبات کوانتومی (قسمت ۲):
مشخص شده است که مسائل NP که P نیستند وجود دارند که در یک کامپیوتر کوانتومی به سرعت قابل حل هستند. به عنوان نمونه، الگوریتم شور برای تجزیهی یک عدد به عوامل اولش. وجود چنین مسائلی، ایدهای به ذهن میرساند که شاید یک کلاسبندی مجزا برای محاسبات کوانتومی نیاز است.
این حوزه، بسیار جدید و نو است و بنابراین، کلاسهای محاسباتی خیلی زیادی تا کنون تعریف نشده است. یکی از معروفترین کلاسها، BQP است که مربوط به مسائلی است که به صورت کارآمد در یک کامپیوتر کوانتومی قابل حل میباشد. مقایسهی این کلاس به نسبت کلاسهای محاسباتی کامپیوترهای کلاسیک، میتواند بسیار مهم و مفید باشد. چنین مقایسهای در تصویر آمده است.
تنها چیزی که مطمئن هستیم این است که هیچ مسئلهی خارج از PSPACE وجود ندارد که در یک کامپیوتر کوانتومی به صورت کارآمد قابل حل باشد. همچنین، تنها این را میدانیم که دستهای از NP ها و PSPACEها هستند که در یک کامپیوتر کوانتومی به صورت کارآمد قابل حلاند.
⚛️ کانال تکامل فیزیکی
@physical_evolution
#فهرست_جامع
فهرست جامع کانال تکامل فیزیکی :
این فهرست با توجه به درخواست دانشجویان و علاقه مندان، برای دسترسی منظم و هدفمند به محتوای تولیدی کانال و هم چنین صرفه جویی در زمان، تدوین شده است و به مرور زمان به روز رسانی خواهد شد.
با تشکر از توجه و همراهی شما 🙏💐
📚 دیباچه:
#تکامل_فیزیکی
📚 فلسفه فیزیک :
#فیزیک_و_فلسفه
#فلسفه
#علم
#فلسفه_و_علم
#اصل_علیت
#پراگماتیسم
#تاریخ_علم
📚 فیزیک نظری :
#فیزیک_نظری
#فیزیک_ریاضی
#نیرو
#نیروهای_بنیادین
📚 فیزیک تجربی :
#اپتیک
#فوتونیک
#نورشناسی
#نیروی_هسته_ای
#هولوگرافی
📚 نجوم و اختر فیزیک:
#رویداد_نجومی
#منظومه_شمسی
#ابر_اورت
#ناسا
#کمربند_کویپر
#سیاره
#ستاره
#زمین
#عطارد
#سامانه_خورشیدی
#زهره
#ماه
#اخترشناسی
#جیمز_وب
#تلسکوپ_هابل
#نجوم
#هابل
#رصد
📚 نانو:
#نانو
#نانو_مواد_سنتز_شده
#طیفسنجی
#آنالیز_نانومواد
📚 نسبیت :
#نسبیت_عام
#آزمون_نسبیت_عام
#نسبیت_خاص
📚 کوانتوم:
#کوانتوم
#مبانی_کوانتوم
#مکانیک_کوانتومی
#کامپیوتر_کوانتومی
#گرانش_کوانتومی
#محاسبات_کوانتومی
#مدار_کوانتومی
#محاسبات_اطلاعات_کوانتومی
#کیوبیت
#فضای_هیلبرت
#حالتهای_بل
#اندازه_گیری
#گرانش_کوانتومی_حلقوی
#درهمتنیدگی
#شبکههای_عصبی
#اشترن_گرلاخ
#بیولوژی_کوانتومی
#زیستشناسی_کوانتومی
#آگاهی_کوانتومی
📚 کیهان شناسی و گرانش:
#کیهان_شناسی
#امواج_گرانشی
#گرانش
#سیاه_چاله
#افق_رویداد
📚 ریاضی فیزیک:
#ریاضی
#قضایای_مهم_ریاضی
#تعاریف_ریاضیات
#پارادوکس
#پارادوکس_زنون
📚 فیزیک پایه :
#حرکت
#درسنامه
#الکترومغناطیس
#خلاصه_فرمول_الکترومغناطیس
#ترمودینامیک_مکانیکآماری
📚 ویدیو تدریس فیزیک:
#ویدیو_تدریس_فیزیک
#فیزیک_کلاسیک
#مفاهیم_بنیادین_فیزیک
#اینرسی_لختی
#ریاضی_فیزیک
📚 ترجمه و زبان تخصصی:
#واژه_تخصصی_فیزیک
#ترجمه_زیرنویس_ویدیو_علمی
#ترجمه_مقاله
#مقاله_طنز
#ترجمه
📚 وبینارها:
#سمینار_علمی
#معرفی_رشته_فیزیک
#تحصیلات_تکمیلی
#مهاجرت_تحصیلی
#معرفی_گرایش_فیزیک
#تصویر_بزرگ
#کنکور
#گزارش
📚 علمی:
#معرفی_پروژه_علمی
#متن_علمی_ادبی
#انقلاب_علمی
#اخبار_علمی
#متن_علمی
#ویدیو_علمی
#تقویم_علمی
#معرفی_کتاب
📚 دانشمندان:
#مصاحبه_فیزیکدانان
#ماکسول
#پنروز
#روولی
#ارسطو
#ابوریحان_بیرونی
#ابن_حیثم
#کوپرنیک
#کپلر
#هایزنبرگ
#فاینمن
⚛ کانال تکامل فیزیکی
@physical_evolution
#فهرست_جامع
فهرست جامع کانال تکامل فیزیکی :
این فهرست با توجه به درخواست دانشجویان و علاقه مندان، برای دسترسی منظم و هدفمند به محتوای تولیدی کانال و هم چنین صرفه جویی در زمان، تدوین شده است و به مرور زمان به روز رسانی خواهد شد.
با تشکر از توجه و همراهی شما 🙏💐
📚 دیباچه:
#تکامل_فیزیکی
📚 فلسفه فیزیک :
#فیزیک_و_فلسفه
#فلسفه
#علم
#فلسفه_و_علم
#اصل_علیت
#پراگماتیسم
#تاریخ_علم
📚 فیزیک نظری :
#فیزیک_نظری
#فیزیک_ریاضی
#نیرو
#نیروهای_بنیادین
📚 فیزیک تجربی :
#اپتیک
#فوتونیک
#نورشناسی
#نیروی_هسته_ای
#هولوگرافی
📚 نجوم و اختر فیزیک:
#رویداد_نجومی
#منظومه_شمسی
#ابر_اورت
#ناسا
#کمربند_کویپر
#سیاره
#ستاره
#زمین
#عطارد
#سامانه_خورشیدی
#زهره
#ماه
#اخترشناسی
#جیمز_وب
#تلسکوپ_هابل
#نجوم
#هابل
#رصد
📚 نانو:
#نانو
#نانو_مواد_سنتز_شده
#طیفسنجی
#آنالیز_نانومواد
📚 نسبیت :
#نسبیت_عام
#آزمون_نسبیت_عام
#نسبیت_خاص
📚 کوانتوم:
#کوانتوم
#مبانی_کوانتوم
#مکانیک_کوانتومی
#کامپیوتر_کوانتومی
#گرانش_کوانتومی
#محاسبات_کوانتومی
#مدار_کوانتومی
#محاسبات_اطلاعات_کوانتومی
#کیوبیت
#فضای_هیلبرت
#حالتهای_بل
#اندازه_گیری
#گرانش_کوانتومی_حلقوی
#درهمتنیدگی
#شبکههای_عصبی
#اشترن_گرلاخ
#بیولوژی_کوانتومی
#زیستشناسی_کوانتومی
#آگاهی_کوانتومی
📚 کیهان شناسی و گرانش:
#کیهان_شناسی
#امواج_گرانشی
#گرانش
#سیاه_چاله
#افق_رویداد
📚 ریاضی فیزیک:
#ریاضی
#قضایای_مهم_ریاضی
#تعاریف_ریاضیات
#پارادوکس
#پارادوکس_زنون
📚 فیزیک پایه :
#حرکت
#درسنامه
#الکترومغناطیس
#خلاصه_فرمول_الکترومغناطیس
#ترمودینامیک_مکانیکآماری
📚 ویدیو تدریس فیزیک:
#ویدیو_تدریس_فیزیک
#فیزیک_کلاسیک
#مفاهیم_بنیادین_فیزیک
#اینرسی_لختی
#ریاضی_فیزیک
📚 ترجمه و زبان تخصصی:
#واژه_تخصصی_فیزیک
#ترجمه_زیرنویس_ویدیو_علمی
#ترجمه_مقاله
#مقاله_طنز
#ترجمه
📚 وبینارها:
#سمینار_علمی
#معرفی_رشته_فیزیک
#تحصیلات_تکمیلی
#مهاجرت_تحصیلی
#معرفی_گرایش_فیزیک
#تصویر_بزرگ
#کنکور
#گزارش
📚 علمی:
#معرفی_پروژه_علمی
#متن_علمی_ادبی
#انقلاب_علمی
#اخبار_علمی
#متن_علمی
#ویدیو_علمی
#تقویم_علمی
#معرفی_کتاب
📚 دانشمندان:
#مصاحبه_فیزیکدانان
#ماکسول
#پنروز
#روولی
#ارسطو
#ابوریحان_بیرونی
#ابن_هیثم
#کوپرنیک
#کپلر
#هایزنبرگ
#فاینمن
⚛ کانال تکامل فیزیکی
@physical_evolution